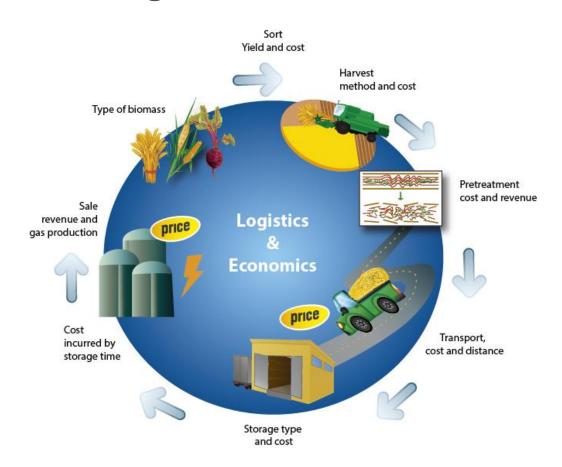


Logistic of Biogas Production



Logistic in production of biogas

How is production, transport and storage optimized?

Many parameters need optimization and coordination

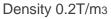
Wheat straw as an example:

Straw bale or briquette?

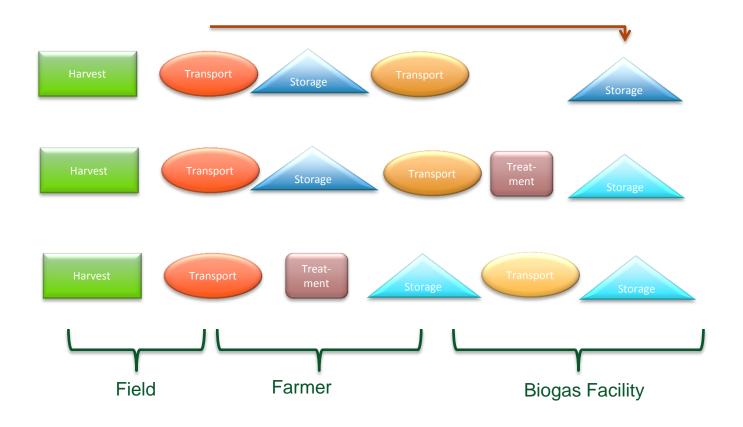
Transport in field/on road?

Loading/unloading?

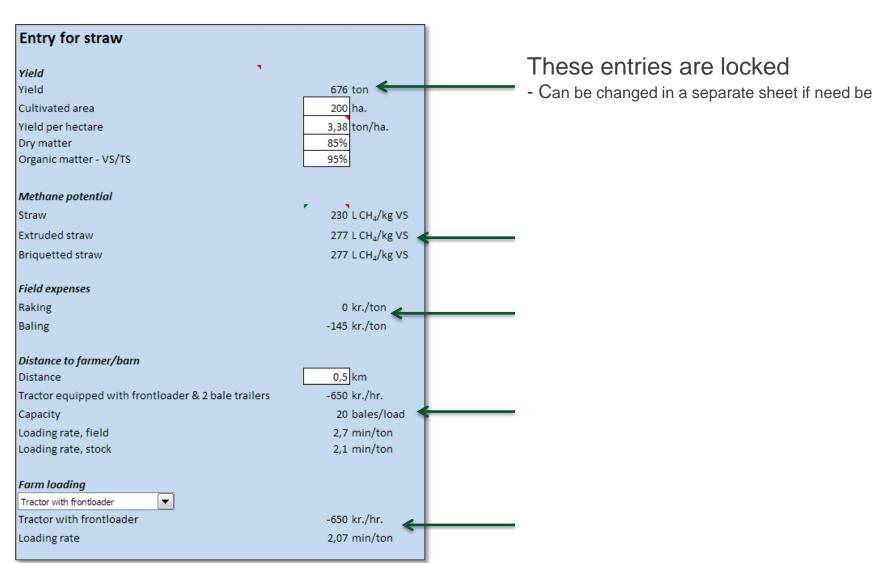
Stored in open barn, closed barn, silo, container?



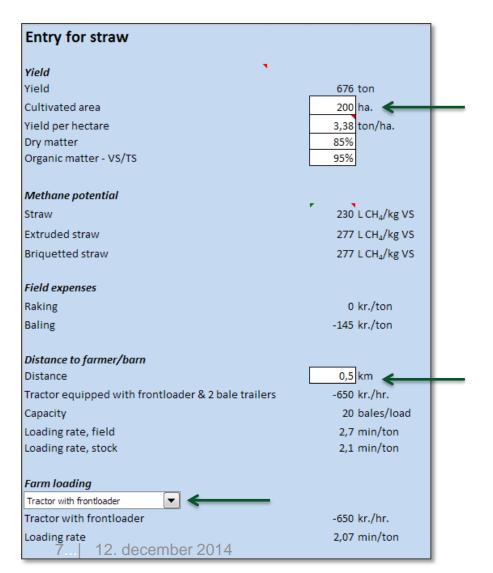
Ø= 7-9 cm Density 0.5 T/m₃


Logistic in production of biogas

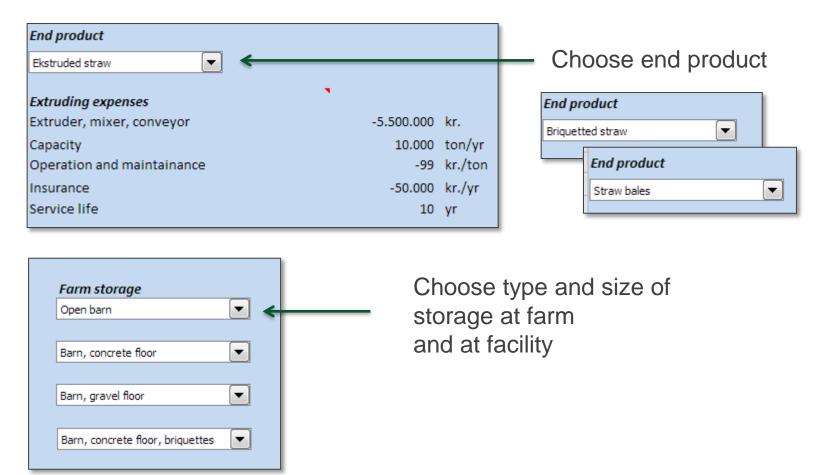
How can all these parameters be optimized?


Which parameters inflict most on economy?

This calls for a model !!!


Identification of value chains

Example: Wheat straw, Data entry sheet


Example: Wheat straw, Data entry sheet

White boxes signify required user input

Example: Wheat straw, Data entry sheet

Example: Wheat straw, Comparison sheet

Wheat straw calculator				Decentral briquetting		
End product:	Straw bal	es		End product	Briquetted s	traw
Expected costs:				Expected costs:		
Baling and raking	-145	kr./ton		Baling and raking	-145	kr./ton
Farm storage	-349	kr./ton		Farm storage	-42	kr./ton
Plant storage	-267	kr./ton		Plant storage	-356	kr./ton
Transport	-211	kr./ton		Transport	-181	kr./ton
Pretreatment	-	kr./ton		Pretreatment	-1.001	kr./ton
Cost per ton	-972	kr./ton		Cost per ton	-1.725	kr./ton
Total cost	-657.402	kr.		Total cost	-1.166.294	kr.
Expected income:				Expected income:		
Energy yield	2.185	kWh/ton		Energy yield	2.632	kWh/ton
- Electricity	874	kWh/ton		- Electricity	1.053	kWh/ton
- Heat	1.093	kWh/ton		- Heat	1.316	kWh/ton
Income from electricity	970	kr./ton		Income from electricity	1.168	kr./ton
Income from heat	273	kr./ton		Income from heat	329	kr./ton
Income per ton	1.243	kr./ton		Income per ton	1.497	kr./ton
Total income	840.447	kr.		Total income	1.012.191	kr.
Difference, kr	183.045	kr.]	Difference, kr	-154.103	kr.

Example: Wheat straw Print sheet

Economy: Straw to Biogas

Printet 27-10-2014

Harvest

End product Briquetted straw

Cultivated area 200 ha.

Transport: Field to farmer 0,5 km with Tractor & frontloader

Transport: Farmer to facility 60 km with Truck & trailer

Loading equipment Telescopic loader at farm, Tractor with frontloader at facility

Yield

Yield 3,38 Ton/ha.

Dry matter 89% Ash 3%

Gas potential 277 L CH4/kgVS Gas yield 805 m3 CH4/ha.

Storage

Storage needed 4225 m3 bales or 1502 m3 briquettes

Farmer site, storage Open barn, 5000 m3

Facility, storage Barn with concrete floor, 5000 m3

Note: Storage facility used for multiple purposes

Pretreatment

Briquetting

Cost, yearly -kr. 626.590

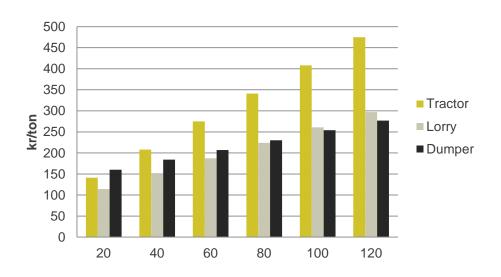
Hereof, paid by straw 6 % (straw) and 80 % (other)

Economy

 Expected costs
 kr.
 -542.137

 Expected yield
 kr.
 916.298

 Difference
 kr.
 374.162

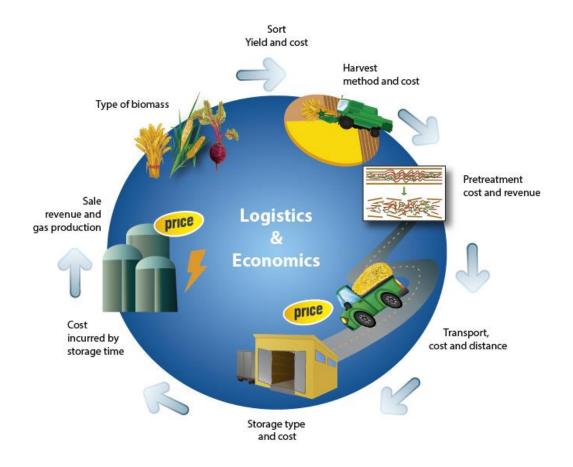

Print sheets can be used to compare costs

Udskrevet d.	22-10-201
Høstmetode	
Færdigt produkt	Ingen forbehandling
Transport til landmand	Dækket af høstomkostninger
Transport udover 12 km	5 km med Traktor med halmvogn
Maskiner anvendt til høst	Pistemaskine
Maskiner anvendt til læsning	Skal ikke omlæsses
Udbytte	
Areal	12 ha.
Udbytte	69,6 Ton/ha.
Tørstofindhold	80%
Askeindhold	5%
Gaspotentiale	234 L CH4/KgVs
Gasudbytte	1017 m3 CH4/ha
	Bemærk: Gasudbytte afhænger af græsblanding og høsttidspun
Lagring	
Lagerbehov	249 stk rundballer
Valgt lagringsmetode	Baller under presenning
	Bemærk: Kun lagret på anlæg
Forbehandling	
Ikke valgt	
Økonomi	
Omkostning, landmand	-108 øre/kgTS
Olikostillig, ialiullialiu	-100 MIE/ VB (3
Forventet omkostninger	kr59.685
Forventet udbytte	kr. 69.500
Difference	kr. 9.81

Produktionsomkos	tninger for enggræs til biogas			
Udskrevet d.	21-10-2014			
Høstmetode				
Færdigt produkt	Ingen forbehandling			
Transport til landmand	Dækket af høstomkostninger			
Transport udover 12 km	5 km med Traktor med halmvogn			
Maskiner anvendt til høst	Pistemaskine			
Maskiner anvendt til læsning	Skal ikke omlæsses			
Udbytte				
Areal	12 ha.			
Udbytte	69,6 Ton/ha.			
Tørstofindhold	80%			
Askeindhold	5%			
Gaspotentiale	234 L CH4/KgVs			
Gasudbytte	1017 m3 CH4/ha			
	Bemærk: Gasudbytte afhænger af græsblanding og høsttidspunk			
Lagring				
Jagerbehov 249 stk rundballer				
Valgt lagringsmetode	Ingen lagring/lagring i det fri			
	Bemærk: Kun lagret på anlæg			
Forbehandling				
Ikke valgt				
Økonomi				
	20 are light			
Omkostning, landmand	-80 øre/kgTS			
Forventet omkostninger	kr44.025			
Forventet udbytte	kr. 69.502			
Difference	kr. 25.477			

Use of model to calculate transport costs

Case: Straw is transported from the field to the farmer and further to the facility. It can be transported directly from the farmer to the facility as bales or 17 km as bales to a local briquetting station and then further to the facility. Briquettes are transported using a dumper. Cost includes transport as bales and loading/unloading of bales/briquettes.



	Tractor	Lorry	Dumper
Kr./hr	550	625	650
Load	24 bales	24 bales	22 ton
Km/hr.	25	52	52

Cost calculations – questions answered by the model

- "How is cost affected if..."
 - Another type of storage is chosen?
 - The methane potential increases?
 - The straw is pretreated?
 - Beets are produced instead of maize?
 - The distance to the facility changes?
 - Straw is briquetted locally instead of at the facility?
 - Electricity cost changes?
 - Trucks are used for transport instead of tractors?
- 50-100 parameters can be varied for each crop
- The outcomes can easily be compared

WP5: Logistics & Economics

